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the number density and temperature of a
hot inhomogeneous plasma. This could be
done by measuring the phase and the ampli-
tude of the wave as a function of z.

APPENDIX

DERIVATION OF THE WAVE EQUATION IN A
Hor INHOMOGENEOUS STATIONARY PLASMA

Assume all quantities are of the form
Ao+A41where 4 indicates time-independent
quantities and A, indicates time-varying
quantities. Further assume that the ions of
density Ny are smeared out and stationary
to form a neutralizing background. The in-
stantanecus charge density

p=—(No+ Ne+ Nee = — Nie (14)
and current
= — (No+ Ne(@) = — Noetw  (15)
together with Maxwell's equations
aeoE

T = curl — (16)

? + curlE =0 (17)
div eoE =p (18)

lead to expressions (with assumed time
dependence )
(= E; — curl curl El) 19

—+N ety "
Wi \C

1]

Ni= — 2 divE,. (20)
e
The linearized equation of motion (1)
yields two terms

b eNoEo — grad Pn =0 (21)

imeo% = - 6N1E0 - 6NOE1 - grad Pl. (22)
Combining (19) to (22) together with an
assumed equation of state p=+NkT, one
obtains the wave equation (2).
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Comments on Excitation of Spin
Waves by Wire Arrays

Messrs. LaRosa and Vasile

Kaufman and Soohoo* have suggested
that spin waves involving exchange forces
can be excited by means of a fine wire at the
end of a YIG crystal. It would be very
desirable to do this, for then the entire
crystal might be kept at a low enough dc
field to avoid coupling to acoustic waves. We
have made a detailed analysis of an array
of flat wires immersed in an infinite YIG
medium and also printed on the air-YIG
interface of a semi-infinite YI[G medium.
The dc magnetic field has been taken both
perpendicular to the plane of the array and
parallel to the array conductors.

One idea which runs through the litera-
ture on the subject is that the rapid decay
of the exciting field in the desired propaga-
tion direction should enable some net cou-
pling to be obtained to the very short wave-
length (10~® cm) exchange spin waves.
Accordingly, the currents in the adjacent
wires were assumed to be oppositely di-
rected. The assumption of an infinite array
enabled the boundary value problem to be
solved in rectangular coordinates. The mag-
netic field and the RF magnetization com-
ponent could be expressed in terms of
Fourier sine and cosine series as functions of
the coordinate along the array (perpendicu-
lar to the conductors). No variation along
the conductors was assumed. The variation
perpendicular to the array has several
propagation constant values given by a
dispersion relation for each orientation of
the de field.

For the dc field perpendicular to the
array, four values of wave vector k were
found.

1) Low-k (electromagnetic). Decaying in
propagation direction.

2) Medium-k propagating. Similar to
magnetostatic waves (group velocity
opposite to phase velocity).

3) High-k propagating. Involving ex-

change forces, obeying w/v=Hi+He
a’k?,
4) High-k, nonpropagating. Circular

polarization sense opposite to the high-

1 Manuscript received November 8, 1965.

2 J. Kaufman and R. F. Soohoo, “Properties and
excitation of spin waves—A new microwave time
delay medium,” presented at 1964 PTGMTT Inter-
national Symposium.
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k propagating. Obeying dispersion
relation —w/y=Hi-+H, a%? (k? nega-
tive).

It was found that for all conductor
widths and spacings, only low-%2 waves were
excited. In fact, the ability of the low-%
waves to satisfy the boundary conditions is
enhanced by decreasing the width and spac-
ing of the conductors. The plausibility
argument for this is that the electromagnetic
field of the conductors without any YIG
obeys very closely Laplace’s equation, i.e.,
k=0. Therefore, there is no variation in the
exciting field which tends to displace the
spins against the exchange forces. Very close
conductor spacing creates a fast decay per-
pendicular to the array and an equally fast
periodic variation along the array. The sec-
ond derivatives in the two directions are
equal and opposite and the Laplacian is zero.

The situation is slightly different with
the dc field parallel to the wires. The close-
ness of the conductors drops out of the dis-
persion relation. Three values of k are per-
mitted.

1) Low-k (electromagnetic) becomes
high-k nonpropagating as the field is
increased.

2) High-k propagating becomes low-k
as the field is increased.

3) High-k  nonpropagating
about the same.

remains

There is a restricted range of field in
which 1) and 2) become comparable, so that
true spin waves involving exchange forces
are excited. However, good excitation of
propagating spin waves occurs only for spin
wavelengths comparable to or greater than
elastic wavelengths. Also, this region is very
narrow band.

The transmission line analog used by
Kaufman and Soohoo? assumes single mode
propagation and reduces a two- or three-
dimensional problem to a one-dimensional
problem. The actual magnetic field of the
conductor is replaced by sources distributed
along the transmission line. This distributed
source analog is based on Schlsmann,?
equation (10), which we believe to be a mis-
interpretation, as follows.

The equations of motion give the sus-
ceptibility tensor which relates the RF
magnetization to the RF magnetic field in a
gyrotropic medium. This tensor expresses
the effects of forces imposed by the local
magnetic field and the exchange forces on
the spin dipole moments. These forces cause
precession at an amplitude and rate con-
sistent with the magnetogyric ratio.

When the susceptibility tensor is in-
serted in Maxwell's equations, a set of
homogeneous equations can be obtained for
either the magnetization or the magnetic
field. The dispersion relation is obtained by
setting the determinant equal to zero.

There are no source terms involved in
the interior of the region. Amplitudes are
determined by matching solutions at boun-
daries.

3 I, Kaufman and R. F. Sochoo, “Magnetic waves
for microwave time delay—Some observations and
results,” IEEE Trans. on Microwave Theory and Tech-
nigues, vol. MTT-13, pp. 458-467, July 1965.

4 E. Schiomann, “Generation of gpin wavegin non-
uniform magnetic fields, I. Conversion of electro-
magnetic power into spin-wave power and vice versa,”
J. Appl. Phys., vol. 35, p. 159-166, January 1964.
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The above procedure is used by Auld® in
the solution for magnetostatic modes of
spheres and is fully described in Lax and
Button.® In Schlémann’s (10), the magnetic
field % is not a source term. It must have the
same spatial variation as «, since both % and
a are simply the variables in a homogeneous
set of equations. If % has an exponential de-
cay in the z-direction, so will @. That is, the
solution will consist entirely of the low-&
mode. If there is to be any high-k propagat-
ing spin wave in the solution for «, there
must be a high-k propagating wave in k.
Obviously, the unperturbed field of a con-
ductor will not contain a short-wavelength
variation. The boundary wvalue problem
must be solved to determine whether such
a component is present in the YIG,

We believe that Schlémann’s (12) is not
an inhomogeneous equation and that the
distributed source interpretation is not cor-
rect. The calculations which follow his (12)
are, however, essentially correct because the
excitation is not calculated from the un-
perturbed (without YIG) magnetic field.

Incorrect interpretation of Schlémann’s
(10) leads to serious errors when the fre-
quency is such that short wavelength spin
waves are allowed by the dispersion rela-
tion. Under these conditions, the low-&
(electromagnetic) solution is also allowed
and the % term in Schlémann’s (10) matches
the unperturbed field almost exactly. (“Un-
perturbed” means YIG dielectric constant
assumed but magnetic dipoles ignored.)
Our boundary value solutions show that
very little spin wave excitation is obtained,
and we think that it makes little difference
how many conductors are used or whether
they are flat or round.

To date, the only effective linear method
of coupling an electromagnetic field to high-
k, propagating spin waves is, as predicted
by Schlémann, to couple at a point where
the spin-wavelength approaches the elec-
tromagnetic wavelength. By shaping the
dc magnetic field, one can slide along the
dispersion relation to the high-%2 region.
Under these conditions, spin-phonon cou-
pling is unavoidable and spin wave defocus-
ing can become a serious problem.

Our calculations are lengthy and not
suitable for this published correspondence.
They will be supplied to interested workers.

R. LaRosA

C. F. VasiLE
Research Div.
Hazeltine Corp.
Little Neck, N. Y.

Messrs. Kaufman and Soohoo?

The idea of exciting spin waves in a ma-
terial by excitation of a specimen with a
field that extends only a short distance into
the material was proposed before us by
Liithi.8 In our paper® we describe a possible

5 B, A. Auld, “Walker modes in large ferrite sam-
ples,” J. Appl. Phys., vol. 31, pp. 1642—1647, Septem-
ber, 1960.

6 B. Lax and K. Button, Microwave Ferrites and
Ferri;nsagnetic:. New VYork: McGraw-Hill, 1962,
sec. 7.5.

7 Manuscript received February 14, 1966.

8 B, Luthi, “Propagation of spin waves,” J. Appl.
Phys., vol, 33, pp. 244-245, January 1962,

method of accomplishing this by using a
fine wire. LaRosa and Vasile maintain that
this scheme (and, by inference, any similar
scheme) is not valid, since the magnetiza-
tion must always have the same periodicity
as the applied RF #-field; and that the RF
h-field must have the same spatial variation
as the magnetization.

It should be pointed out here that the
excitation of a standing spin wave in a
film, first demonstrated by Seavey and
Tannenwald,? is accomplished with an RF
magnetic field distribution that is essen-
tially of constant amplitude throughout the
film, yet the spin wave local amplitude
varies in the manner of a standing wave dis-
tribution. Accordingly, it is not necessary
to have the same spatial distribution for
RF field as for magnetization.

LaRosa and Vasile state that Schls-
mann's (12)* is not an inhomogeneous
equation. This equation is based on the
equation of motion of the magnetization,

oM M X VM

_'(,; = 'Y(MX H) + ’YHazazl—m_‘ (1)

For the infinite medium, assuming fields
H=gh,+a,h,+3.Hy and magnetization
M=gdm,~+3d,my,~+3,M,, where all RF terms
vary as exp (jof), this equation is

azmu (—’yHo - w) Mo
L me= — . (2
dz% + vH r0? o H,,0? v (2)

Here, following Schlémann? he=he4jhy;
o=y +jm, Neither the spatial distribu-
tion of ko nor that of m, have been specified.
As usual, the solution to the homogeneous
portion of this equation results in o
=A exp (jkz)+B exp (—jkz), where
k= [(—vHy—w)/vH.,02]¥? is the usual dis-
persion relation for z-directed spin waves.
(Here only variation with z was assumed.)
Equation (2) above is therefore clearly in-
homogeneous; the %, allowing for additional
solutions. In these, the A and B coefficients
are now not constants where %, is nonzero,
but they allow for “normal mode” propaga-
tion of 4, B where hy=0. The scheme is
analogous to the piezoelectric transducer.

Since this analysis is based solely on the
equation of motion (1), it is not completely
correct; for a more rigorous solution would
also include Maxwell's equations. However,
since the exchange power content of a spin
wave far exceeds that of the usual Poynting
vector power,® this treatment should be
fairly accurate.

It is of interest to mention here that an
earlier analysis!! states the relation between
hj. and my, of a spin wave, based on Maxwell’s
equations. In this normal mode analysis, we
find

_ 4r(wle,/cD)my — dak(k-my) .

k2 — wl,/c?

hy, 3)

Curiously, h; and m;, here do not have the
same spatial distribution, because of the
presence of the k-my, term.

M. H. Seavey, Jr.,, and P, E. Tannenwald,
“Direct observation of spin wave resonance,” Phys,
Rey. Lelts., vol. 1, pp. 168-169, September 1, 1958,

101, Kaufman and R. K, Soohoo, “The electric
field and wave impedance propagation,” IEEE Trans.
on Microwave Theory and Techniques (Correspondence),
vol. MIT-13, pp. 703-704, September 1965,

1 R. F. Soohoo, “General spin-wave dispersion re-
lations,” Phys. Rev., vol. 120, pp. 1978-1986, Deceme
ber 15, 1960,
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In conclusion, we wish to state that while
our transmission line one-dimensional analy-
sis is a simplification over the actual physi-
cal picture, we feel that this analysis is still
correct in principle, in the light of the argu-
ments presented here.

I. KAUFMAN

Dept. of Elec. Engrg.
Arizona State University
Tempe, Ariz.

R. F. Soonoo

Dept. of Elec. Engrg.
University of California
Davis, Calif.

Messrs. LaRosa and Vasile?

1) Our comments apply to homogeneous
magnetic insulators. Spin waves are gener-
ated in thin films because of one or more
of the following complications: finite con-
ductivity, variation of 4xM, with depth,
surface pinning (which prevents uniform
precession), and small sample size in direc-
tion of propagation.

2) We are not sufficiently familiar with
the piezoelectric transducer analogy to judge
its relevance.

3) We still believe that Maxwell’s equa-
tions solved simultaneously with the equa-
tions of motion yield a homogeneous set of
equations in 7, % or & There are no sources
distributed in the volume of the YIG. There
are no perturbations in the YIG medium
which could serve as sources via perturba-
tion theory.

12 Manuscript received March 8, 1966,

Reflection Measurements with
Broadband Frequency Modulation
Using Long Transmission Lines

This correspondence describes some
applications of broadband frequency modu-
lation for measuring reflections on moder-
ately long transmission lines. As known
from earlier publications on this subject [1],
[2], and from FM-radar techniques, a fre-
quency modulated wave train from a sweep
generator is fed into a transmission line. A
part of the energy is scattered back by re-
flections produced on the line or at the end
of it. A detector conveniently coupled to the
line near the generator provides for mixing
of transmitted and scattered wave ampli-
tudes, thus generating an intermediate fre-
quency signal (generally 0.1...15 kHz)
which can be processed by audio frequency
techniques. ’

Ideally, the following equation holds for
this audio signal:

4rdfm
Vi =2 krs cos (———f Ar - ¢,.> I¢h)
L3 v

Manuscript received May 11, 1966; revised June
27, 1966.



